1.Describe the four categories of output
Output is data that has been processed into a useful form called information. Four types of output are text, graphics, audio, and video. Text consists of characters (letters, numbers, punctuation marks, or any other symbol requiring one byte of computer storage space) that are used to create words, sentences, and paragraphs. Graphics are digital representations of nontext information such as drawings, charts, photographs, and animation (a series of still images in rapid sequence that gives the illusion of motion). Audio is music, speech, or any other sound. Video consists of images played back at speeds to provide the appearance of full motion. An output device is any computer component capable of conveying information to a user.
2.The Characteristics of LCD monitors, LCD screens, plasma monitors, and HDTVs.
A liquid crystal display (LCD) is a thin, flat electronic visual display that uses the light modulating properties of liquid crystals (LCs). LCs do not emit light directly.
They are used in a wide range of applications, including computer monitors, television, instrument panels, aircraft cockpit displays, signage, etc. They are common in consumer devices such as video players, gaming devices, clocks, watches, calculators, and telephones. LCDs have displaced cathode ray tube (CRT) displays in most applications. They are usually more compact, lightweight, portable, less expensive, more reliable, and easier on the eyes. They are available in a wider range of screen sizes than CRT and plasma displays, and since they do not use phosphors, they cannot suffer image burn-in.Plasma displays are bright (1,000 lux or higher for the module), have a wide color gamut, and can be produced in fairly large sizes—up to 150 inches (3.8 m) diagonally. They have a very low-luminance "dark-room" black level compared to the lighter grey of the unilluminated parts of an LCD screen (i.e. the blacks are blacker on plasmas and greyer on LCDs).LED-backlit LCD televisions have been developed to reduce this distinction. The display panel itself is about 6 cm (2.5 inches) thick, generally allowing the device's total thickness (including electronics) to be less than 10 cm (4 inches). Plasma displays use as much power per square meter as a CRT or an AMLCD television.Power consumption varies greatly with picture content, with bright scenes drawing significantly more power than darker ones – this is also true of CRTs. Typical power consumption is 400 watts for a 50-inch (127 cm) screen. 200 to 310 watts for a 50-inch (127 cm) display when set to cinema mode. Most screens are set to 'shop' mode by default, which draws at least twice the power (around 500–700 watts) of a 'home' setting of less extreme brightness.Panasonic has greatly reduced power consumption ("1/3 of 2007 models"). Panasonic states that PDPs will consume only half the power of their previous series of plasma sets to achieve the same overall brightness for a given display size. The lifetime of the latest generation of plasma displays is estimated at 100,000 hours of actual display time, or 27 years at 10 hours per day. This is the estimated time over which maximum picture brightness degrades to half the original value.High-definition television (or HDTV) is video that has resolution substantially higher than that of traditional television systems (standard-definition TV, or SDTV, or SD). HDTV has one or two million pixels per frame, roughly five times that of SD. Early HDTV broadcasting used analog techniques, but today HDTV is digitally broadcast using video compression.
3.What are the components inside the system units?
The system unit is the core of a computer system. Usually it's a rectangular box placed on or underneath your desk. Inside this box are many electronic components that process information. The most important of these components is the central processing unit (CPU), or microprocessor, which acts as the "brain" of your computer. Another component is random access memory (RAM), which temporarily stores information that the CPU uses while the computer is on. The information stored in RAM is erased when the computer is turned off.
4.The components of a processor and how they complete a machine cycle.
"Components of a processor"
1.Control unit - responsible for supervising the operation of the entire computer system.
2.Arithmetic/logical unit - provides the computer with logical and computational capabilities.
3.Register - a storage location inside the processor.
"Machine Cycle"
The program is represented by a series of numbers that are kept in some kind of computer memory. There are four steps that nearly all CPUs use in their operation: fetch, decode, execute, and writeback.
The first step, fetch, involves retrieving an instruction (which is represented by a number or sequence of numbers) from program memory. The location in program memory is determined by a program counter (PC), which stores a number that identifies the current position in the program. After an instruction is fetched, the PC is incremented by the length of the instruction word in terms of memory units.[5] Often, the instruction to be fetched must be retrieved from relatively slow memory, causing the CPU to stall while waiting for the instruction to be returned. This issue is largely addressed in modern processors by caches and pipeline architectures.
After the fetch and decode steps, the execute step is performed. During this step, various portions of the CPU are connected so they can perform the desired operation. If, for instance, an addition operation was requested, the arithmetic logic unit (ALU) will be connected to a set of inputs and a set of outputs. The inputs provide the numbers to be added, and the outputs will contain the final sum. The ALU contains the circuitry to perform simple arithmetic and logical operations on the inputs (like addition and bitwise operations). If the addition operation produces a result too large for the CPU to handle, an arithmetic overflow flag in a flags register may also be set.The final step, writeback, simply "writes back" the results of the execute step to some form of memory. Very often the results are written to some internal CPU register for quick access by subsequent instructions. In other cases results may be written to slower, but cheaper and larger, main memory.
5.Define a bit and describe how a serires of bits represents data.
A bit (a contraction of binary digit) is the basic unit of information in computing and telecommunications; it is the amount of information stored by a digital device or other physical system that exists in one of two possible distinct states. These may be the two stable states of a flip-flop, two positions of an electrical switch, two distinct voltage or current levels allowed by a circuit, two distinct levels of light intensity, two directions of magnetization or polarization, etc.
Bits can be implemented in many forms. In most modern computing devices, a bit is usually represented by an electrical voltage or current pulse, or by the electrical state of a flip-flop circuit. For devices using positive logic, a digit value of 1 (true value or high) is represented by a positive voltage relative to the electrical ground voltage (up to 5 volts in the case of TTL designs), while a digit value of 0 (false value or low) is represented by 0 volts.
6. Identify the categories of application software.
Types of Application Software
Word Processing Software: Allows users to create, edit a document. Example: MS Word, Word Pad etc.
Spreadsheet Software: Allows users to create document and perform calculation. Example: Excel, Lotus1-2-3 etc.
Database Software: Allows users to store and retrieve vast amount of data. Example: MS Access, MySQL, Oracle etc.
Presentation Graphic Software: Allows users to create visual presentation. Example: MS Power Point
Multimedia Software: Allows users to create image, audio, video etc. Example: Real Player, Media Player etc.
7.Identify the key features of widely used business programs.
Jaspersoft:The most widely used open source business intelligence software.
JasperReports is part of the JasperSoft open source business intelligence suite.JasperReports offers a range of reporting and charting features.
Features:
- Adhoc Reporting – With JasperReports you can generate ad hoc reports and queries.
- Drag and Drop – Reports can be put together quickly using drag and drop features, with no need for programming knowledge.
- Data sources – Data can be imported from most file formats, including Excel, XML, relational, Hibernate and EJB
- Automatic Reporting – JasperReports can be programmed to generate and distribute reports at given intervals.
- Dashboard Designer – JasperReports comes with a dashboard designer, which also uses drag and drop features.
Application software, also known as an application or an "app", is computer software designed to help the user to perform singular or multiple related specific tasks. Examples include enterprise software, accounting software, office suites, graphics software and media players. Many application programs deal principally with documents. Apps may be bundled with the computer and its system software, or may be published separately. Some users are satisfied with the bundled apps and need never install one.
Application software is contrasted with system software and middlewar, which manage and integrate a computer's capabilities, but typically do not directly apply them in the performance of tasks that benefit the user. The system software serves the application, which in turn serves the user.
Similar relationships apply in other fields. For example, a shopping mall does not provide the merchandise a shopper is seeking, but provides space and services for retailers that serve the shopper. Rail track similarly support trains, allowing the trains to transport passengers.
9.History of the internet.
The history of the Internet starts in the 1950s and 1960s with the development of computers. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks.
In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced. Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) developed the Computer Science Network (CSNET) and again in 1986 when NSFNET provided access to supercomputer sites in the United States from research and education organizations. The ARPANET was decommissioned in 1990. Commercial internet service providers (ISPs) began to emerge in the late 1980s and 1990s and the Internet was commercialized in 1995 when NSFNET was decommissioned, removing the last restrictions on the use of the Internet to carry commercial traffic.
Since the mid-1990s the Internet has had a drastic impact on culture and commerce, including the rise of near instant communication by electronic mail, instant messaging, Voice over Internet Protocol (VoIP) "phone calls", two-way interactive video calls, and the World Wide Web with its discussion forums, blogs, social networking, and online shopping sites. The research and education community continues to use advanced networks such as NSF's very high speed Backbone Network Service (vBNS) and Internet2. Increasing amounts of data are transmitted at higher and higher speeds over fiber optic networks operating at 1-Gbit/s, 10-Gbit/s, or more. The Internet continues to grow, driven by ever greater amounts of online information and knowledge, commerce, entertainment and social networking.
10.What are different storage devices?
A storage device may hold information, process information, or both. A device that only holds information is a recording medium. Devices that process information (data storage equipment) may either access a separate portable (removable) recording medium or a permanent component to store and retrieve information. The two primary storage technologies are magnetic and optical.
The primary types of magnetic storage are:
1.Disketes
2.Hard disk
3.High-capacity floppy disks
4.Disks cartridges
5.Magnetic tape
The primary types of optical storage are:
1.Compact Disks
2.Digital versatile/video disk
3.High definition DVD
4.Blu ray
5.Legacy Optical devices
Walang komento:
Mag-post ng isang Komento